X-ray in-depth decomposition: Revealing the latent structures

Shadi Albarqouni, Javad Fotouhi, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

X-ray is the most readily available imaging modality and has a broad range of applications that spans from diagnosis to intra-operative guidance in cardiac, orthopedics, and trauma procedures. Proper interpretation of the hidden and obscured anatomy in X-ray images remains a challenge and often requires high radiation dose and imaging from several perspectives. In this work, we aim at decomposing the conventional X-ray image into d X-ray components of independent, non-overlapped, clipped sub-volume, that separate rigid structures into distinct layers, leaving all deformable organs in one layer, such that the sum resembles the original input. Our proposed model is validaed on 6 clinical datasets (∼ 7200 X-ray images) in addition to 615 real chest X-ray images. Despite the challenging aspects of modeling such a highly ill-posed problem, exciting and encouraging results are obtained paving the path for further contributions in this direction.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
EditorsLena Maier-Hein, Alfred Franz, Pierre Jannin, Simon Duchesne, Maxime Descoteaux, D. Louis Collins
PublisherSpringer Verlag
Pages444-452
Number of pages9
ISBN (Print)9783319661780
DOIs
StatePublished - 2017
Event20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 11 Sep 201713 Sep 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10435 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period11/09/1713/09/17

Fingerprint

Dive into the research topics of 'X-ray in-depth decomposition: Revealing the latent structures'. Together they form a unique fingerprint.

Cite this