X-ray dark-field imaging modeling

W. Cong, F. Pfeiffer, M. Bech, G. Wang

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Dark-field images are formed from x-ray small-angle scattering signals. The small-angle scattering signals are particularly sensitive to structural variation and density fluctuation on a length scale of several tens to hundreds of nanometers, offering a unique contrast mechanism to reveal subtle structural features of an object. In this study, based on the principle of energy conservation, we develop a physical model to describe the relationship between x-ray small-angle scattering coefficients of an object and dark-field intensity images. This model can be used to reconstruct volumetric x-ray small-angle scattering images of an object using classical tomographic algorithms. We also establish a relationship between the small-angle scattering intensity and the visibility function measured with x-ray grating imaging. The numerical simulations and phantom experiments have demonstrated the accuracy and practicability of the proposed model.

Original languageEnglish
Pages (from-to)908-912
Number of pages5
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume29
Issue number6
DOIs
StatePublished - Jun 2012

Fingerprint

Dive into the research topics of 'X-ray dark-field imaging modeling'. Together they form a unique fingerprint.

Cite this