Workspace Fixation for Free-Floating Space Robot Operations

Alessandro M. Giordano, Davide Calzolari, Alin Albu-Schaffer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations

Abstract

When a space robot accidentally or voluntarily comes in contact with a target object, a workspace shift happens due to exchange of momentum between the objects. The problem of workspace adjustment is addressed herein. A novel controller is derived to simultaneously adjust the workspace and control the end-effector pose. The controller is based on a center-of-mass (CoM) regulation which fixes the workspace in the inertial space while leaving the base free to move, resulting in fuel efficiency. The control is validated on hardware using a robotic simulator composed of a seven degree-of-freedom (DOF) arm mounted on a 6DOF moving base.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Robotics and Automation, ICRA 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages889-896
Number of pages8
ISBN (Electronic)9781538630815
DOIs
StatePublished - 10 Sep 2018
Event2018 IEEE International Conference on Robotics and Automation, ICRA 2018 - Brisbane, Australia
Duration: 21 May 201825 May 2018

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2018 IEEE International Conference on Robotics and Automation, ICRA 2018
Country/TerritoryAustralia
CityBrisbane
Period21/05/1825/05/18

Fingerprint

Dive into the research topics of 'Workspace Fixation for Free-Floating Space Robot Operations'. Together they form a unique fingerprint.

Cite this