Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

Victor P. Stein, Hans Jakob Kaltenbach

Research output: Contribution to journalConference articlepeer-review

9 Scopus citations

Abstract

Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

Original languageEnglish
Article number032061
JournalJournal of Physics: Conference Series
Volume753
Issue number3
DOIs
StatePublished - 3 Oct 2016
EventScience of Making Torque from Wind, TORQUE 2016 - Munich, Germany
Duration: 5 Oct 20167 Oct 2016

Fingerprint

Dive into the research topics of 'Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution'. Together they form a unique fingerprint.

Cite this