TY - JOUR
T1 - Widely tunable 2.3 μm III-V-on-silicon vernier lasers for broadband spectroscopic sensing
AU - Wang, Ruijun
AU - Sprengel, Stephan
AU - Vasiliev, Anton
AU - Boehm, Gerhard
AU - Van Campenhout, Joris
AU - Lepage, Guy
AU - Verheyen, Peter
AU - Baets, Roel
AU - Amann, Markus Christian
AU - Roelkens, Gunther
N1 - Publisher Copyright:
© 2018 Chinese Laser Press.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Heterogeneously integrating III-V materials on silicon photonic integrated circuits has emerged as a promising approach to make advanced laser sources for optical communication and sensing applications. Tunable semiconductor lasers operating in the 2–2.5 μm range are of great interest for industrial and medical applications since many gases (e.g., CO2, CO, CH4) and biomolecules (such as blood glucose) have strong absorption features in this wavelength region. The development of integrated tunable laser sources in this wavelength range enables low-cost and miniature spectroscopic sensors. Here we report heterogeneously integrated widely tunable III-V-on-silicon Vernier lasers using two silicon microring resonators as the wavelength tuning components. The laser has a wavelength tuning range of more than 40 nm near 2.35 μm. By combining two lasers with different distributed Bragg reflectors, a tuning range of more than 70 nm is achieved. Over the whole tuning range, the side-mode suppression ratio is higher than 35 dB. As a proof-of-principle, this III-V-on-silicon Vernier laser is used to measure the absorption lines of CO. The measurement results match very well with the high-resolution transmission molecular absorption (HITRAN) database and indicate that this laser is suitable for broadband spectroscopy.
AB - Heterogeneously integrating III-V materials on silicon photonic integrated circuits has emerged as a promising approach to make advanced laser sources for optical communication and sensing applications. Tunable semiconductor lasers operating in the 2–2.5 μm range are of great interest for industrial and medical applications since many gases (e.g., CO2, CO, CH4) and biomolecules (such as blood glucose) have strong absorption features in this wavelength region. The development of integrated tunable laser sources in this wavelength range enables low-cost and miniature spectroscopic sensors. Here we report heterogeneously integrated widely tunable III-V-on-silicon Vernier lasers using two silicon microring resonators as the wavelength tuning components. The laser has a wavelength tuning range of more than 40 nm near 2.35 μm. By combining two lasers with different distributed Bragg reflectors, a tuning range of more than 70 nm is achieved. Over the whole tuning range, the side-mode suppression ratio is higher than 35 dB. As a proof-of-principle, this III-V-on-silicon Vernier laser is used to measure the absorption lines of CO. The measurement results match very well with the high-resolution transmission molecular absorption (HITRAN) database and indicate that this laser is suitable for broadband spectroscopy.
UR - http://www.scopus.com/inward/record.url?scp=85052787647&partnerID=8YFLogxK
U2 - 10.1364/PRJ.6.000858
DO - 10.1364/PRJ.6.000858
M3 - Article
AN - SCOPUS:85052787647
SN - 2327-9125
VL - 6
SP - 858
EP - 866
JO - Photonics Research
JF - Photonics Research
IS - 9
ER -