TY - JOUR
T1 - Why are adaptive methods good for attention models?
AU - Zhang, Jingzhao
AU - Karimireddy, Sai Praneeth
AU - Veit, Andreas
AU - Kim, Seungyeon
AU - Reddi, Sashank
AU - Kumar, Sanjiv
AU - Sra, Suvrit
N1 - Publisher Copyright:
© 2020 Neural information processing systems foundation. All rights reserved.
PY - 2020
Y1 - 2020
N2 - While stochastic gradient descent (SGD) is still the de facto algorithm in deep learning, adaptive methods like Clipped SGD/Adam have been observed to outperform SGD across important tasks, such as attention models. The settings under which SGD performs poorly in comparison to adaptive methods are not well understood yet. In this paper, we provide empirical and theoretical evidence that a heavy-tailed distribution of the noise in stochastic gradients is one cause of SGD’s poor performance. We provide the first tight upper and lower convergence bounds for adaptive gradient methods under heavy-tailed noise. Further, we demonstrate how gradient clipping plays a key role in addressing heavy-tailed gradient noise. Subsequently, we show how clipping can be applied in practice by developing an adaptive coordinate-wise clipping algorithm (ACClip) and demonstrate its superior performance on BERT pretraining and finetuning tasks.
AB - While stochastic gradient descent (SGD) is still the de facto algorithm in deep learning, adaptive methods like Clipped SGD/Adam have been observed to outperform SGD across important tasks, such as attention models. The settings under which SGD performs poorly in comparison to adaptive methods are not well understood yet. In this paper, we provide empirical and theoretical evidence that a heavy-tailed distribution of the noise in stochastic gradients is one cause of SGD’s poor performance. We provide the first tight upper and lower convergence bounds for adaptive gradient methods under heavy-tailed noise. Further, we demonstrate how gradient clipping plays a key role in addressing heavy-tailed gradient noise. Subsequently, we show how clipping can be applied in practice by developing an adaptive coordinate-wise clipping algorithm (ACClip) and demonstrate its superior performance on BERT pretraining and finetuning tasks.
UR - http://www.scopus.com/inward/record.url?scp=85108440267&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85108440267
SN - 1049-5258
VL - 2020-December
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 34th Conference on Neural Information Processing Systems, NeurIPS 2020
Y2 - 6 December 2020 through 12 December 2020
ER -