TY - GEN
T1 - “What's This?” - Learning to Segment Unknown Objects from Manipulation Sequences
AU - Boerdijk, Wout
AU - Sundermeyer, Martin
AU - Durner, Maximilian
AU - Triebel, Rudolph
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - We present a novel framework for self-supervised grasped object segmentation with a robotic manipulator. Our method successively learns an agnostic foreground segmentation followed by a distinction between manipulator and object solely by observing the motion between consecutive RGB frames. In contrast to previous approaches, we propose a single, end-to-end trainable architecture which jointly incorporates motion cues and semantic knowledge. Furthermore, while the motion of the manipulator and the object are substantial cues for our algorithm, we present means to robustly deal with distraction objects moving in the background, as well as with completely static scenes. Our method neither depends on any visual registration of a kinematic robot or 3D object models, nor on precise hand-eye calibration or any additional sensor data. By extensive experimental evaluation we demonstrate the superiority of our framework and provide detailed insights on its capability of dealing with the aforementioned extreme cases of motion. We also show that training a semantic segmentation network with the automatically labeled data achieves results on par with manually annotated training data. Code and pretrained model are available at https://github.com/DLR-RM/DistinctNet.
AB - We present a novel framework for self-supervised grasped object segmentation with a robotic manipulator. Our method successively learns an agnostic foreground segmentation followed by a distinction between manipulator and object solely by observing the motion between consecutive RGB frames. In contrast to previous approaches, we propose a single, end-to-end trainable architecture which jointly incorporates motion cues and semantic knowledge. Furthermore, while the motion of the manipulator and the object are substantial cues for our algorithm, we present means to robustly deal with distraction objects moving in the background, as well as with completely static scenes. Our method neither depends on any visual registration of a kinematic robot or 3D object models, nor on precise hand-eye calibration or any additional sensor data. By extensive experimental evaluation we demonstrate the superiority of our framework and provide detailed insights on its capability of dealing with the aforementioned extreme cases of motion. We also show that training a semantic segmentation network with the automatically labeled data achieves results on par with manually annotated training data. Code and pretrained model are available at https://github.com/DLR-RM/DistinctNet.
UR - http://www.scopus.com/inward/record.url?scp=85111228508&partnerID=8YFLogxK
U2 - 10.1109/ICRA48506.2021.9560806
DO - 10.1109/ICRA48506.2021.9560806
M3 - Conference contribution
AN - SCOPUS:85111228508
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 10160
EP - 10167
BT - 2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Y2 - 30 May 2021 through 5 June 2021
ER -