What Do AEs Learn? Challenging Common Assumptions in Unsupervised Anomaly Detection

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Detecting abnormal findings in medical images is a critical task that enables timely diagnoses, effective screening, and urgent case prioritization. Autoencoders (AEs) have emerged as a popular choice for anomaly detection and have achieved state-of-the-art (SOTA) performance in detecting pathology. However, their effectiveness is often hindered by the assumption that the learned manifold only contains information that is important for describing samples within the training distribution. In this work, we challenge this assumption and investigate what AEs actually learn when they are posed to solve anomaly detection tasks. We have found that standard, variational, and recent adversarial AEs are generally not well-suited for pathology detection tasks where the distributions of normal and abnormal strongly overlap. In this work, we propose MorphAEus, novel deformable AEs to produce pseudo-healthy reconstructions refined by estimated dense deformation fields. Our approach improves the learned representations, leading to more accurate reconstructions, reduced false positives and precise localization of pathology. We extensively validate our method on two public datasets and demonstrate SOTA performance in detecting pneumonia and COVID-19. Code: https://github.com/ci-ber/MorphAEus.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
EditorsHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
PublisherSpringer Science and Business Media Deutschland GmbH
Pages304-314
Number of pages11
ISBN (Print)9783031439032
DOIs
StatePublished - 2023
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14224 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Country/TerritoryCanada
CityVancouver
Period8/10/2312/10/23

Keywords

  • Anomaly Detection
  • Representation Learning

Fingerprint

Dive into the research topics of 'What Do AEs Learn? Challenging Common Assumptions in Unsupervised Anomaly Detection'. Together they form a unique fingerprint.

Cite this