What are the driving forces for water lifting in the xylem conduit?

Ulrich Zimmermann, Heike Schneider, Lars H. Wegner, Hans Jürgen Wagner, Michael Szimtenings, Axel Haase, Friedrich Wilhelm Bentrup

Research output: Contribution to journalShort surveypeer-review

46 Scopus citations


After Renner had shown convincingly in 1925 that the transpirational water loss generates tensions larger than 0.1 MPa (i.e. negative pressures) in the xylem of cut leafy twigs the Cohesion Theory proposed by Böhm, Askenasy, Dixon and Joly at the end of the 19th century was immediately accepted by plant physiologists. Introduction of the pressure chamber technique by Scholander et al. in 1965 enforced the general belief that tension is the only driving force for water lifting although substantial criticism regarding the technique and/or the Cohesion Theory was published by several authors. As typical for scientific disciplines, the advent of minimal- and non-invasive techniques in the last decade as well as the development of a new, reliable method for xylem sap sampling have challenged this view. Today, xylem pressure gradients, potentials, ion concentrations and volume flows as well as cell turgor pressure gradients can be monitored online in intact transpiring higher plants, and within a given physiological context by using the pressure probe technique and high-resolution NMR imaging techniques, respectively. Application of the pressure probe technique to transpiring plants has shown that negative absolute pressures (down to -0.6 MPa) and pressure gradients can exist temporarily in the xylem conduit, but that the magnitude and (occasionally) direction of gradients contrasts frequently the belief that tension is the only driving force. This seems to be particularly the case for plants faced with problems of height, drought, freezing and salinity as well as with cavitation of the tensile water. Reviewing the current data base shows that other forces come into operation when exclusively tension fails to lift water against gravity due to environmental conditions. Possible candidates are longitudinal cellular and xylem osmotic pressure gradients, axial potential gradients in the vessels as well as gel- and gas bubble-supported interracial gradients. The multiforce theory overcomes the problem of the Cohesion Theory that life on earth depends on water being in a highly metastable state.

Original languageEnglish
Pages (from-to)327-335
Number of pages9
JournalPhysiologia Plantarum
Issue number3
StatePublished - 2002
Externally publishedYes


Dive into the research topics of 'What are the driving forces for water lifting in the xylem conduit?'. Together they form a unique fingerprint.

Cite this