TY - GEN
T1 - Wavefront-MCTS
T2 - 37th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2018
AU - Hu, Yong
AU - Mueller-Gritschneder, Daniel
AU - Schlichtmann, Ulf
N1 - Publisher Copyright:
© 2018 ACM.
PY - 2018/11/5
Y1 - 2018/11/5
N2 - Application-specific MPSoCs profit immensely from a custom-fit Network-on-Chip (NoC) architecture in terms of network performance and power consumption. In this paper we suggest a new approach to explore application-specific NoC architectures. In contrast to other heuristics, our approach uses a set of network modifications defined with graph rewriting rules to model the design space exploration as a Markov Decision Process (MDP). The MDP can be efficiently explored using the Monte Carlo Tree Search (MCTS) heuristics. We formulate a weighted sum reward function to compute a single solution with a good trade-off between power and latency or a set of max reward functions to compute the complete Pareto front between the two objectives. The Wavefront feature adds additional efficiency when computing the Pareto front by exchanging solutions between parallel MCTS optimization processes. Comparison with other popular search heuristics demonstrates a higher efficiency of MCTS-based heuristics for several test cases. Additionally, the Wavefront-MCTS heuristics allows complete tracability and control by the designer to enable an interactive design space exploration process.
AB - Application-specific MPSoCs profit immensely from a custom-fit Network-on-Chip (NoC) architecture in terms of network performance and power consumption. In this paper we suggest a new approach to explore application-specific NoC architectures. In contrast to other heuristics, our approach uses a set of network modifications defined with graph rewriting rules to model the design space exploration as a Markov Decision Process (MDP). The MDP can be efficiently explored using the Monte Carlo Tree Search (MCTS) heuristics. We formulate a weighted sum reward function to compute a single solution with a good trade-off between power and latency or a set of max reward functions to compute the complete Pareto front between the two objectives. The Wavefront feature adds additional efficiency when computing the Pareto front by exchanging solutions between parallel MCTS optimization processes. Comparison with other popular search heuristics demonstrates a higher efficiency of MCTS-based heuristics for several test cases. Additionally, the Wavefront-MCTS heuristics allows complete tracability and control by the designer to enable an interactive design space exploration process.
KW - MCTS
KW - NoC
KW - multi-objective design space exploration
UR - http://www.scopus.com/inward/record.url?scp=85058175456&partnerID=8YFLogxK
U2 - 10.1145/3240765.3240863
DO - 10.1145/3240765.3240863
M3 - Conference contribution
AN - SCOPUS:85058175456
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
BT - 2018 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2018 - Digest of Technical Papers
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 5 November 2018 through 8 November 2018
ER -