TY - GEN
T1 - Walking control of fully actuated robots based on the bipedal SLIP model
AU - Garofalo, Gianluca
AU - Ott, Christian
AU - Albu-Schäffer, Alin
PY - 2012
Y1 - 2012
N2 - The goal of this paper is to generate and stabilize a periodic walking motion for a five degrees of freedom planar robot. First of all we will consider a biped version of the spring loaded inverted pendulum (SLIP), which shows openloop stable behavior. Then we will control the robot behavior as close as possible to the simple model. In this way we take advantage of the open-loop stability of the walking pattern related to the SLIP, and additional control actions are used to increase the robustness of the system and reject external disturbances. To this end an upper level controller will deal with the stabilization of the SLIP model, while a lower level controller will map the simple virtual model onto the real robot dynamics. Two different approaches are implemented for the lower level: in the first one, we aim at exactly reproducing the same acceleration that a SLIP would have when put in the same condition, while in the second one, we aim at a simpler control law without exactly reproducing the aforementioned acceleration. The latter case is equivalent to considering a SLIP with additional external disturbances, which have to be handled by the upper level controller. Both approaches can successfully reproduce a periodic walking pattern for the robot.
AB - The goal of this paper is to generate and stabilize a periodic walking motion for a five degrees of freedom planar robot. First of all we will consider a biped version of the spring loaded inverted pendulum (SLIP), which shows openloop stable behavior. Then we will control the robot behavior as close as possible to the simple model. In this way we take advantage of the open-loop stability of the walking pattern related to the SLIP, and additional control actions are used to increase the robustness of the system and reject external disturbances. To this end an upper level controller will deal with the stabilization of the SLIP model, while a lower level controller will map the simple virtual model onto the real robot dynamics. Two different approaches are implemented for the lower level: in the first one, we aim at exactly reproducing the same acceleration that a SLIP would have when put in the same condition, while in the second one, we aim at a simpler control law without exactly reproducing the aforementioned acceleration. The latter case is equivalent to considering a SLIP with additional external disturbances, which have to be handled by the upper level controller. Both approaches can successfully reproduce a periodic walking pattern for the robot.
UR - http://www.scopus.com/inward/record.url?scp=84864447548&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2012.6225272
DO - 10.1109/ICRA.2012.6225272
M3 - Conference contribution
AN - SCOPUS:84864447548
SN - 9781467314039
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 1456
EP - 1463
BT - 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
Y2 - 14 May 2012 through 18 May 2012
ER -