TY - JOUR
T1 - Vitamin B-12 deficiency and hyperhomocysteinemia are partly ameliorated by cobalt and nickel supplementation in pigs
AU - Stangl, G. I.
AU - Roth-Maier, D. A.
AU - Kirchgessner, M.
PY - 2000
Y1 - 2000
N2 - Vitamin B-12 deficiency and hyperhomocysteinemia alter the metabolism of trace elements. This study tested the hypothesis that there is a reverse relationship in which diets high in iron, copper, nickel and cobalt would influence vitamin B-12 deficiency outcomes including hyperhomocysteinemia. Piglets (German Landrace x Pietrain) were assigned to six groups of 8 and fed one of the following diets for 166 d: a vitamin B-12-adequate and folate-fortified diet (30 μg/kg vitamin B-12 and 0.5 mg/kg folate) with normal trace element concentrations or one of five vitamin B-12-free, folate nonsupplemented diets (0.36 mg/kg), with either normal trace element concentrations or high concentrations of iron (300 mg/kg), copper (30 mg/kg), cobalt (1 mg/kg) or nickel (6 mg/kg). Feed intake and weight gain did not differ significantly among the groups. Vitamin B-12-deficient pigs developed diminished serum and liver concentrations of vitamin B-12 and folate, an accumulation of iron in the liver and hyperhomocysteinemia. The magnitude of changes differed among vitamin B-12-deficient groups. Vitamin B-12-deficient pigs fed 6 mg/kg nickel had distinctly higher vitamin B-12 concentrations in liver and serum and 45% lower serum concentration of homocysteine than the corresponding deficiency group fed 1 mg/kg nickel; iron concentration in liver was completely normalized. Vitamin B-12-deficient pigs fed 1 mg/kg cobalt had 47% lower homocysteine concentrations in serum than the vitamin B-12-deficient group fed 0.13 mg/kg cobalt, but the vitamin B-12 status was unaffected. Supplementation of iron and copper did not affect these variables. The dietary manipulations had no detrimental effects on variables symptomatic of oxidative stress. The findings indicate a collaborative relationship between vitamin B-12 metabolism and the trace elements nickel and cobalt.
AB - Vitamin B-12 deficiency and hyperhomocysteinemia alter the metabolism of trace elements. This study tested the hypothesis that there is a reverse relationship in which diets high in iron, copper, nickel and cobalt would influence vitamin B-12 deficiency outcomes including hyperhomocysteinemia. Piglets (German Landrace x Pietrain) were assigned to six groups of 8 and fed one of the following diets for 166 d: a vitamin B-12-adequate and folate-fortified diet (30 μg/kg vitamin B-12 and 0.5 mg/kg folate) with normal trace element concentrations or one of five vitamin B-12-free, folate nonsupplemented diets (0.36 mg/kg), with either normal trace element concentrations or high concentrations of iron (300 mg/kg), copper (30 mg/kg), cobalt (1 mg/kg) or nickel (6 mg/kg). Feed intake and weight gain did not differ significantly among the groups. Vitamin B-12-deficient pigs developed diminished serum and liver concentrations of vitamin B-12 and folate, an accumulation of iron in the liver and hyperhomocysteinemia. The magnitude of changes differed among vitamin B-12-deficient groups. Vitamin B-12-deficient pigs fed 6 mg/kg nickel had distinctly higher vitamin B-12 concentrations in liver and serum and 45% lower serum concentration of homocysteine than the corresponding deficiency group fed 1 mg/kg nickel; iron concentration in liver was completely normalized. Vitamin B-12-deficient pigs fed 1 mg/kg cobalt had 47% lower homocysteine concentrations in serum than the vitamin B-12-deficient group fed 0.13 mg/kg cobalt, but the vitamin B-12 status was unaffected. Supplementation of iron and copper did not affect these variables. The dietary manipulations had no detrimental effects on variables symptomatic of oxidative stress. The findings indicate a collaborative relationship between vitamin B-12 metabolism and the trace elements nickel and cobalt.
KW - High trace element diets
KW - Hyperhomocysteinemia
KW - Pigs
KW - Vitamin B-12 deficiency
UR - http://www.scopus.com/inward/record.url?scp=0034535916&partnerID=8YFLogxK
U2 - 10.1093/jn/130.12.3038
DO - 10.1093/jn/130.12.3038
M3 - Article
C2 - 11110865
AN - SCOPUS:0034535916
SN - 0022-3166
VL - 130
SP - 3038
EP - 3044
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 12
ER -