Visible Light-Mediated Dearomative Hydrogen Atom Abstraction/ Cyclization Cascade of Indoles

Yang Xiong, Johannes Großkopf, Christian Jandl, Thorsten Bach

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

The photochemical synthesis of yet unknown 2-oxospiro[azetidine-3,3′-indolines] (17 examples, 80–95 % yield), 2,4-dioxospiro[azetidine-3,3′-indolines] (eight examples, 87–97 % yield), and 1-oxo-1,3-dihydrospiro[indene-2,3′-indolines] (17 examples, 85–97 % yield) is described. Starting from readily accessible 3-substituted indoles, a dearomatization of the indole core was accomplished upon irradiation at λ=420 nm in the presence of thioxanthen-9-one (10 mol%) as the sensitizer. Based on mechanistic evidence (triplet energy determination, deuteration experiments, by-product analysis) it is proposed that the reaction proceeds by energy transfer via a 1,4- or 1,5-diradical intermediate. The latter intermediates are formed by excited state hydrogen atom transfer from suitable alkyl groups within the C3 substituent to the indole C2 carbon atom. Subsequent ring closure proceeds with pronounced diastereoselectivity to generate a 4- or 5-membered spirocyclic dearomatized product with several options for further functionalization.

Original languageEnglish
Article numbere202200555
JournalAngewandte Chemie International Edition in English
Volume61
Issue number18
DOIs
StatePublished - 25 Apr 2022

Keywords

  • C−H Activation
  • Heterocycles
  • Hydrogen Transfer
  • Photochemistry
  • Sensitizers

Fingerprint

Dive into the research topics of 'Visible Light-Mediated Dearomative Hydrogen Atom Abstraction/ Cyclization Cascade of Indoles'. Together they form a unique fingerprint.

Cite this