TY - GEN
T1 - VISA-FSS
T2 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
AU - Mozafari, Mohammad
AU - Bitarafan, Adeleh
AU - Azampour, Mohammad Farid
AU - Farshad, Azade
AU - Soleymani Baghshah, Mahdieh
AU - Navab, Nassir
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
PY - 2023
Y1 - 2023
N2 - Few-shot segmentation (FSS) models have gained popularity in medical imaging analysis due to their ability to generalize well to unseen classes with only a small amount of annotated data. A key requirement for the success of FSS models is a diverse set of annotated classes as the base training tasks. This is a difficult condition to meet in the medical domain due to the lack of annotations, especially in volumetric images. To tackle this problem, self-supervised FSS methods for 3D images have been introduced. However, existing methods often ignore intra-volume information in 3D image segmentation, which can limit their performance. To address this issue, we propose a novel self-supervised volume-aware FSS framework for 3D medical images, termed VISA-FSS. In general, VISA-FSS aims to learn continuous shape changes that exist among consecutive slices within a volumetric image to improve the performance of 3D medical segmentation. To achieve this goal, we introduce a volume-aware task generation method that utilizes consecutive slices within a 3D image to construct more varied and realistic self-supervised FSS tasks during training. In addition, to provide pseudo-labels for consecutive slices, a novel strategy is proposed that propagates pseudo-labels of a slice to its adjacent slices using flow field vectors to preserve anatomical shape continuity. In the inference time, we then introduce a volumetric segmentation strategy to fully exploit the inter-slice information within volumetric images. Comprehensive experiments on two common medical benchmarks, including abdomen CT and MRI, demonstrate the effectiveness of our model over state-of-the-art methods. Code is available at https://github.com/sharif-ml-lab/visa-fss
AB - Few-shot segmentation (FSS) models have gained popularity in medical imaging analysis due to their ability to generalize well to unseen classes with only a small amount of annotated data. A key requirement for the success of FSS models is a diverse set of annotated classes as the base training tasks. This is a difficult condition to meet in the medical domain due to the lack of annotations, especially in volumetric images. To tackle this problem, self-supervised FSS methods for 3D images have been introduced. However, existing methods often ignore intra-volume information in 3D image segmentation, which can limit their performance. To address this issue, we propose a novel self-supervised volume-aware FSS framework for 3D medical images, termed VISA-FSS. In general, VISA-FSS aims to learn continuous shape changes that exist among consecutive slices within a volumetric image to improve the performance of 3D medical segmentation. To achieve this goal, we introduce a volume-aware task generation method that utilizes consecutive slices within a 3D image to construct more varied and realistic self-supervised FSS tasks during training. In addition, to provide pseudo-labels for consecutive slices, a novel strategy is proposed that propagates pseudo-labels of a slice to its adjacent slices using flow field vectors to preserve anatomical shape continuity. In the inference time, we then introduce a volumetric segmentation strategy to fully exploit the inter-slice information within volumetric images. Comprehensive experiments on two common medical benchmarks, including abdomen CT and MRI, demonstrate the effectiveness of our model over state-of-the-art methods. Code is available at https://github.com/sharif-ml-lab/visa-fss
KW - Few-shot learning
KW - Few-shot semantic segmentation
KW - Medical image segmentation
KW - Self-supervised learning
KW - Supervoxels
UR - http://www.scopus.com/inward/record.url?scp=85174704067&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-43895-0_11
DO - 10.1007/978-3-031-43895-0_11
M3 - Conference contribution
AN - SCOPUS:85174704067
SN - 9783031438943
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 112
EP - 122
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
A2 - Greenspan, Hayit
A2 - Greenspan, Hayit
A2 - Madabhushi, Anant
A2 - Mousavi, Parvin
A2 - Salcudean, Septimiu
A2 - Duncan, James
A2 - Syeda-Mahmood, Tanveer
A2 - Taylor, Russell
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 8 October 2023 through 12 October 2023
ER -