Vehicle detection based on LiDAR and camera fusion

Feihu Zhang, Daniel Clarke, Alois Knoll

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

70 Scopus citations

Abstract

Vehicle detection is important for advanced driver assistance systems (ADAS). Both LiDAR and cameras are often used. LiDAR provides excellent range information but with limits to object identification; on the other hand, the camera allows for better recognition but with limits to the high resolution range information. This paper presents a sensor fusion based vehicle detection approach by fusing information from both LiDAR and cameras. The proposed approach is based on two components: a hypothesis generation phase to generate positions that potential represent vehicles and a hypothesis verification phase to classify the corresponding objects. Hypothesis generation is achieved using the stereo camera while verification is achieved using the LiDAR. The main contribution is that the complementary advantages of two sensors are utilized, with the goal of vehicle detection. The proposed approach leads to an enhanced detection performance; in addition, maintains tolerable false alarm rates compared to vision based classifiers. Experimental results suggest a performance which is broadly comparable to the current state of the art, albeit with reduced false alarm rate.

Original languageEnglish
Title of host publication2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1620-1625
Number of pages6
ISBN (Electronic)9781479960781
DOIs
StatePublished - 14 Nov 2014
Event2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014 - Qingdao, China
Duration: 8 Oct 201411 Oct 2014

Publication series

Name2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014

Conference

Conference2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014
Country/TerritoryChina
CityQingdao
Period8/10/1411/10/14

Fingerprint

Dive into the research topics of 'Vehicle detection based on LiDAR and camera fusion'. Together they form a unique fingerprint.

Cite this