TY - JOUR
T1 - VEGF165 transfection decreases postischemic NF-kappa B-dependent myocardial reperfusion injury in vivo
T2 - role of eNOS phosphorylation.
AU - Kupatt, Christian
AU - Hinkel, Rabea
AU - Vachenauer, Robert
AU - Horstkotte, Jan
AU - Raake, Philip
AU - Sandner, Torleif
AU - Kreuzpointner, Robert
AU - Müller, Fabian
AU - Dimmeler, Stefanie
AU - Feron, Olivier
AU - Boekstegers, Peter
PY - 2003/4
Y1 - 2003/4
N2 - Endothelial nitric oxide synthase (eNOS) phosphorylation increases nitric oxide formation, for example, after VEGF stimulation. We investigated whether nitric oxide formed after overexpression of VEGF or of phosphomimetic eNOS (S1177D) affects PMN-induced myocardial detriment after ischemia and reperfusion. Pigs (n=8 per group) were subjected to percutaneous liposome-based gene transfer by retroinfusion of the anterior interventricular vein 48 h before LAD occlusion (60 min) and reperfusion (24 h). Thereafter, regional myocardial function was assessed as subendocardial segment shortening (SES), and infarct size was determined. Tissue from the infarct region, the noninfarcted area at risk, and a control region was analyzed for NF-kappaB activation (EMSA), tumor necrosis factor (TNF)-alpha, and E-selectin mRNA and infiltration of polymorphonuclear neutrophils (PMN). L-NAME was applied in one group of VEGF-transfected animals. NF-kappaB activition, PMN infiltration in the infarct region, and AAR were reduced after transfection of VEGF or eNOS S1177D, but not after VEGF+L-NAME coapplication. Infarct size decreased, whereas SES improved after either VEGF or eNOS S1177D transfection, an effect inhibited by L-NAME coapplication. Retroinfusion of liposomal VEGF cDNA reduces NF-kappaB-dependent postischemic inflammation and subsequent myocardial reperfusion injury, an effect mediated at least in part by enhanced eNOS phosphorylation.
AB - Endothelial nitric oxide synthase (eNOS) phosphorylation increases nitric oxide formation, for example, after VEGF stimulation. We investigated whether nitric oxide formed after overexpression of VEGF or of phosphomimetic eNOS (S1177D) affects PMN-induced myocardial detriment after ischemia and reperfusion. Pigs (n=8 per group) were subjected to percutaneous liposome-based gene transfer by retroinfusion of the anterior interventricular vein 48 h before LAD occlusion (60 min) and reperfusion (24 h). Thereafter, regional myocardial function was assessed as subendocardial segment shortening (SES), and infarct size was determined. Tissue from the infarct region, the noninfarcted area at risk, and a control region was analyzed for NF-kappaB activation (EMSA), tumor necrosis factor (TNF)-alpha, and E-selectin mRNA and infiltration of polymorphonuclear neutrophils (PMN). L-NAME was applied in one group of VEGF-transfected animals. NF-kappaB activition, PMN infiltration in the infarct region, and AAR were reduced after transfection of VEGF or eNOS S1177D, but not after VEGF+L-NAME coapplication. Infarct size decreased, whereas SES improved after either VEGF or eNOS S1177D transfection, an effect inhibited by L-NAME coapplication. Retroinfusion of liposomal VEGF cDNA reduces NF-kappaB-dependent postischemic inflammation and subsequent myocardial reperfusion injury, an effect mediated at least in part by enhanced eNOS phosphorylation.
UR - http://www.scopus.com/inward/record.url?scp=0037387680&partnerID=8YFLogxK
U2 - 10.1096/fj.02-0673fje
DO - 10.1096/fj.02-0673fje
M3 - Article
C2 - 12586740
AN - SCOPUS:0037387680
SN - 0892-6638
VL - 17
SP - 705
EP - 707
JO - FASEB Journal
JF - FASEB Journal
IS - 6
ER -