TY - JOUR
T1 - Variable Stiffness Actuators
T2 - Review on Design and Components
AU - Wolf, Sebastian
AU - Grioli, Giorgio
AU - Eiberger, Oliver
AU - Friedl, Werner
AU - Grebenstein, Markus
AU - Hoppner, Hannes
AU - Burdet, Etienne
AU - Caldwell, Darwin G.
AU - Carloni, Raffaella
AU - Catalano, Manuel G.
AU - Lefeber, Dirk
AU - Stramigioli, Stefano
AU - Tsagarakis, Nikos
AU - Van Damme, Michael
AU - Van Ham, Ronald
AU - Vanderborght, Bram
AU - Visser, Ludo C.
AU - Bicchi, Antonio
AU - Albu-Schaffer, Alin
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/10
Y1 - 2016/10
N2 - Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build passively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper gives a guide to the design process from the analysis of the desired tasks identifying the relevant attributes and their influence on the selection of different components such as motors, sensors, and springs. The influence on the performance of different principles to generate the passive compliance and the variation of the stiffness are investigated. Furthermore, the design contradictions during the engineering process are explained in order to find the best suiting solution for the given purpose. With this in mind, the topics of output power, potential energy capacity, stiffness range, efficiency, and accuracy are discussed. Finally, the dependencies of control, models, sensor setup, and sensor quality are addressed.
AB - Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build passively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper gives a guide to the design process from the analysis of the desired tasks identifying the relevant attributes and their influence on the selection of different components such as motors, sensors, and springs. The influence on the performance of different principles to generate the passive compliance and the variation of the stiffness are investigated. Furthermore, the design contradictions during the engineering process are explained in order to find the best suiting solution for the given purpose. With this in mind, the topics of output power, potential energy capacity, stiffness range, efficiency, and accuracy are discussed. Finally, the dependencies of control, models, sensor setup, and sensor quality are addressed.
KW - Physical human-robot interaction
KW - soft robotics
KW - variable impedance actuators (VIAs)
KW - variable stiffness actuators (VSAs)
UR - http://www.scopus.com/inward/record.url?scp=84983488610&partnerID=8YFLogxK
U2 - 10.1109/TMECH.2015.2501019
DO - 10.1109/TMECH.2015.2501019
M3 - Review article
AN - SCOPUS:84983488610
SN - 1083-4435
VL - 21
SP - 2418
EP - 2430
JO - IEEE/ASME Transactions on Mechatronics
JF - IEEE/ASME Transactions on Mechatronics
IS - 5
M1 - 7330025
ER -