Urban Land Cover Classification with Efficient Hybrid Quantum Machine Learning Model

Fan Fan, Yilei Shi, Xiao Xiang Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Urban land cover classification aims to derive crucial information from earth observation data and categorize it into specific land uses. To achieve accurate classification, sophisticated machine learning models trained with large earth observation data are employed, but the required computation power has become a bottleneck. Quantum computing might tackle this challenge in the future. However, representing images into quantum states for analysis with quantum computing is challenging due to the high demand for quantum resources. To tackle this challenge, we propose a hybrid quantum neural network that can effectively represent and classify remote sensing imagery with reduced quantum resources. Our model was evaluated on the Local Climate Zone (LCZ)-based land cover classification task using the TensorFlow Quantum platform, and the experimental results indicate its validity for accurate urban land cover classification.

Original languageEnglish
Title of host publication2024 IEEE Congress on Evolutionary Computation, CEC 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350308365
DOIs
StatePublished - 2024
Event13th IEEE Congress on Evolutionary Computation, CEC 2024 - Yokohama, Japan
Duration: 30 Jun 20245 Jul 2024

Publication series

Name2024 IEEE Congress on Evolutionary Computation, CEC 2024 - Proceedings

Conference

Conference13th IEEE Congress on Evolutionary Computation, CEC 2024
Country/TerritoryJapan
CityYokohama
Period30/06/245/07/24

Fingerprint

Dive into the research topics of 'Urban Land Cover Classification with Efficient Hybrid Quantum Machine Learning Model'. Together they form a unique fingerprint.

Cite this