TY - JOUR
T1 - Updated geoneutrino measurement with Borexino
AU - Borexino Collaboration
AU - Ludhova, Livia
AU - Agostini, M.
AU - Altenmüller, K.
AU - Appel, S.
AU - Atroshchenko, V.
AU - Bagdasarian, Z.
AU - Basilico, D.
AU - Bellini, G.
AU - Benziger, J.
AU - Bick, D.
AU - Bonfini, G.
AU - Bravo, D.
AU - Caccianiga, B.
AU - Calaprice, F.
AU - Caminata, A.
AU - Cappelli, L.
AU - Cavalcante, P.
AU - Cavanna, F.
AU - Chepurnov, A.
AU - Choi, K.
AU - D'Angelo, D.
AU - Davini, S.
AU - Derbin, A.
AU - Di Giacinto, A.
AU - Di Marcello, V.
AU - Ding, X. F.
AU - Di Ludovico, A.
AU - Di Noto, L.
AU - Drachnev, I.
AU - Fiorentini, G.
AU - Formozov, A.
AU - Franco, D.
AU - Gabriele, F.
AU - Galbiati, C.
AU - Gschwender, M.
AU - Ghiano, C.
AU - Giammarchi, M.
AU - Goretti, A.
AU - Gromov, M.
AU - Guffanti, D.
AU - Hagner, C.
AU - Hungerford, E.
AU - Ianni, Aldo
AU - Ianni, Andrea
AU - Jany, A.
AU - Jeschke, D.
AU - Kumaran, S.
AU - Kobychev, V.
AU - Oberauer, L.
AU - Schönert, S.
N1 - Publisher Copyright:
© Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd
PY - 2020/3/20
Y1 - 2020/3/20
N2 - Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and is one of the two detectors that has measured geoneutrinos so far. The unprecedented radio-purity of the scintillator, the shielding with highly purified water, and the placement of the detector at a 3800 m w.e. depth have resulted in very low background levels and has made Borexino an excellent apparatus for geoneutrino measurements. The new update of the Borexino geoneutrino measurement, using the data obtained from December 2007 to April 2019, has been presented. Enhanced analysis techniques, adopted in this measurement, have been also presented (poster presentation #39 by S. Kumaran). The updated statistics and the new elaborate analysis have led to more than a factor two increase in exposure ((1.12 ± 0.05) ×1032 protons × yr) when compared to the latest Borexino result from 2015. The resulting geoneutrino signal of 47.0+8.4−7.7 (stat)+2.4−1.9 (sys) TNU has +18.3−17.2 % total precision. The geological interpretations of this measurement have been discussed. In particular, the 99% C.L. observation of the mantle signal by exploiting the relatively well-known lithospheric contribution, the estimation of the radiogenic heat, as well as the comparison of these results to the predictions based on different geological models. The upper limits on the power of a hypothetical georeactor that might be present at different locations inside the Earth have been set.
AB - Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and is one of the two detectors that has measured geoneutrinos so far. The unprecedented radio-purity of the scintillator, the shielding with highly purified water, and the placement of the detector at a 3800 m w.e. depth have resulted in very low background levels and has made Borexino an excellent apparatus for geoneutrino measurements. The new update of the Borexino geoneutrino measurement, using the data obtained from December 2007 to April 2019, has been presented. Enhanced analysis techniques, adopted in this measurement, have been also presented (poster presentation #39 by S. Kumaran). The updated statistics and the new elaborate analysis have led to more than a factor two increase in exposure ((1.12 ± 0.05) ×1032 protons × yr) when compared to the latest Borexino result from 2015. The resulting geoneutrino signal of 47.0+8.4−7.7 (stat)+2.4−1.9 (sys) TNU has +18.3−17.2 % total precision. The geological interpretations of this measurement have been discussed. In particular, the 99% C.L. observation of the mantle signal by exploiting the relatively well-known lithospheric contribution, the estimation of the radiogenic heat, as well as the comparison of these results to the predictions based on different geological models. The upper limits on the power of a hypothetical georeactor that might be present at different locations inside the Earth have been set.
UR - http://www.scopus.com/inward/record.url?scp=85089567827&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1468/1/012211
DO - 10.1088/1742-6596/1468/1/012211
M3 - Conference article
AN - SCOPUS:85089567827
SN - 1742-6588
VL - 1468
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012211
T2 - 16th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2019
Y2 - 9 September 2019 through 13 September 2019
ER -