Unsupervised Anomaly Localization with Structural Feature-Autoencoders

Felix Meissen, Johannes Paetzold, Georgios Kaissis, Daniel Rueckert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Unsupervised Anomaly Detection has become a popular method to detect pathologies in medical images as it does not require supervision or labels for training. Most commonly, the anomaly detection model generates a “normal” version of an input image, and the pixel-wise lp -difference of the two is used to localize anomalies. However, large residuals often occur due to imperfect reconstruction of the complex anatomical structures present in most medical images. This method also fails to detect anomalies that are not characterized by large intensity differences to the surrounding tissue. We propose to tackle this problem using a feature-mapping function that transforms the input intensity images into a space with multiple channels where anomalies can be detected along different discriminative feature maps extracted from the original image. We then train an Autoencoder model in this space using structural similarity loss that does not only consider differences in intensity but also in contrast and structure. Our method significantly increases performance on two medical data sets for brain MRI. Code and experiments are available at https://github.com/FeliMe/feature-autoencoder.

Original languageEnglish
Title of host publicationBrainlesion
Subtitle of host publicationGlioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Revised Selected Papers
EditorsSpyridon Bakas, Ujjwal Baid, Bhakti Baheti, Alessandro Crimi, Sylwia Malec, Monika Pytlarz, Maximilian Zenk, Reuben Dorent
PublisherSpringer Science and Business Media Deutschland GmbH
Pages14-24
Number of pages11
ISBN (Print)9783031338410
DOIs
StatePublished - 2023
EventProceedings of the 8th International MICCAI Brainlesion Workshop, BrainLes 2022 - Singapore, Singapore
Duration: 18 Sep 202222 Sep 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13769 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceProceedings of the 8th International MICCAI Brainlesion Workshop, BrainLes 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2222/09/22

Keywords

  • Anomaly Detection
  • Anomaly Localization
  • Semi-Supervised Learning

Fingerprint

Dive into the research topics of 'Unsupervised Anomaly Localization with Structural Feature-Autoencoders'. Together they form a unique fingerprint.

Cite this