Unlimited Sampling of Sparse Signals

Ayush Bhandari, Felix Krahmer, Ramesh Raskar

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

56 Scopus citations

Abstract

In a recent paper [1], we introduced the concept of 'Unlimited Sampling'. This unique approach circumvents the clipping or saturation problem in conventional analog-to-digital converters (ADCs) by considering a radically different ADC architecture which resets the input voltage before saturation. Such ADCs, also known as Self-Reset ADCs (SR-ADCs), allow for sensing modulo samples. In analogy to Shannon's sampling theorem, the unlimited sampling theorem proves that a bandlimited signal can be recovered from modulo samples provided that a certain sampling density criterion, that is independent of the ADC threshold, is satisfied. In this way, our result allows for perfect recovery of a bandlimited function whose amplitude exceeds the ADC threshold by orders of magnitude. By capitalizing on this result, in this paper, we consider the inverse problem of recovering a sparse signal from its low-pass filtered version. This problem frequently arises in several areas of science and engineering and in context of signal processing, it is studied in several flavors, namely, sparse or FRI sampling, super-resolution and sparse deconvolution. By considering the SR-ADC architecture, we develop a sampling theory for modulo sampling of lowpass filtered spikes. Our main result consists of a new sparse sampling theorem and an algorithm which stably recovers a K -sparse signal from low-pass, modulo samples. We validate our results using numerical experiments.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4569-4573
Number of pages5
ISBN (Print)9781538646588
DOIs
StatePublished - 10 Sep 2018
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: 15 Apr 201820 Apr 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Conference

Conference2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period15/04/1820/04/18

Keywords

  • Approximation
  • Finite rate of innovation (FRI)
  • Modulo mapping
  • Non-linear sampling
  • Sparse reconstruction

Fingerprint

Dive into the research topics of 'Unlimited Sampling of Sparse Signals'. Together they form a unique fingerprint.

Cite this