TY - GEN
T1 - Unknown Object Segmentation from Stereo Images
AU - Durner, Maximilian
AU - Boerdijk, Wout
AU - Sundermeyer, Martin
AU - Friedl, Werner
AU - Marton, Zoltan Csaba
AU - Triebel, Rudolph
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Although instance-aware perception is a key prerequisite for many autonomous robotic applications, most of the methods only partially solve the problem by focusing solely on known object categories. However, for robots interacting in dynamic and cluttered environments, this is not realistic and severely limits the range of potential applications. Therefore, we propose a novel object instance segmentation approach that does not require any semantic or geometric information of the objects beforehand. In contrast to existing works, we do not explicitly use depth data as input, but rely on the insight that slight viewpoint changes, which for example are provided by stereo image pairs, are often sufficient to determine object boundaries and thus to segment objects. Focusing on the versatility of stereo sensors, we employ a transformer-based architecture that maps directly from the pair of input images to the object instances. This has the major advantage that instead of a noisy, and potentially incomplete depth map as an input, on which the segmentation is computed, we use the original image pair to infer the object instances and a dense depth map. In experiments in several different application domains, we show that our Instance Stereo Transformer (INSTR) algorithm outperforms current state-of-the-art methods that are based on depth maps. Training code and pretrained models are available at https://github.com/DLR-RM/instr.
AB - Although instance-aware perception is a key prerequisite for many autonomous robotic applications, most of the methods only partially solve the problem by focusing solely on known object categories. However, for robots interacting in dynamic and cluttered environments, this is not realistic and severely limits the range of potential applications. Therefore, we propose a novel object instance segmentation approach that does not require any semantic or geometric information of the objects beforehand. In contrast to existing works, we do not explicitly use depth data as input, but rely on the insight that slight viewpoint changes, which for example are provided by stereo image pairs, are often sufficient to determine object boundaries and thus to segment objects. Focusing on the versatility of stereo sensors, we employ a transformer-based architecture that maps directly from the pair of input images to the object instances. This has the major advantage that instead of a noisy, and potentially incomplete depth map as an input, on which the segmentation is computed, we use the original image pair to infer the object instances and a dense depth map. In experiments in several different application domains, we show that our Instance Stereo Transformer (INSTR) algorithm outperforms current state-of-the-art methods that are based on depth maps. Training code and pretrained models are available at https://github.com/DLR-RM/instr.
UR - http://www.scopus.com/inward/record.url?scp=85124340738&partnerID=8YFLogxK
U2 - 10.1109/IROS51168.2021.9636281
DO - 10.1109/IROS51168.2021.9636281
M3 - Conference contribution
AN - SCOPUS:85124340738
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 4823
EP - 4830
BT - IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Y2 - 27 September 2021 through 1 October 2021
ER -