Unknown Object Segmentation from Stereo Images

Maximilian Durner, Wout Boerdijk, Martin Sundermeyer, Werner Friedl, Zoltan Csaba Marton, Rudolph Triebel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

31 Scopus citations

Abstract

Although instance-aware perception is a key prerequisite for many autonomous robotic applications, most of the methods only partially solve the problem by focusing solely on known object categories. However, for robots interacting in dynamic and cluttered environments, this is not realistic and severely limits the range of potential applications. Therefore, we propose a novel object instance segmentation approach that does not require any semantic or geometric information of the objects beforehand. In contrast to existing works, we do not explicitly use depth data as input, but rely on the insight that slight viewpoint changes, which for example are provided by stereo image pairs, are often sufficient to determine object boundaries and thus to segment objects. Focusing on the versatility of stereo sensors, we employ a transformer-based architecture that maps directly from the pair of input images to the object instances. This has the major advantage that instead of a noisy, and potentially incomplete depth map as an input, on which the segmentation is computed, we use the original image pair to infer the object instances and a dense depth map. In experiments in several different application domains, we show that our Instance Stereo Transformer (INSTR) algorithm outperforms current state-of-the-art methods that are based on depth maps. Training code and pretrained models are available at https://github.com/DLR-RM/instr.

Original languageEnglish
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4823-4830
Number of pages8
ISBN (Electronic)9781665417143
DOIs
StatePublished - 2021
Event2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 - Prague, Czech Republic
Duration: 27 Sep 20211 Oct 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Country/TerritoryCzech Republic
CityPrague
Period27/09/211/10/21

Fingerprint

Dive into the research topics of 'Unknown Object Segmentation from Stereo Images'. Together they form a unique fingerprint.

Cite this