Universal superposition codes: capacity regions of compound quantum broadcast channel with confidential messages

Holger Boche, Gisbert Jansen, Sajad Saeedinaeeni

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We derive universal codes for transmission of broadcast and confidential messages over classical- quantum-quantum and fully quantum channels. These codes are robust to channel uncertainties considered in the compound model. To construct these codes we generalize random codes for transmission of public messages, to derive a universal superposition coding for the compound quantum broadcast channel. As an application, we give a multi-letter characterization of regions corresponding to capacity of the compound quantum broadcast channel for transmitting broadcast and confidential messages simultaneously. This is done for two types of broadcast messages, one called public and the other common.

Original languageEnglish
Title of host publication2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1961-1966
Number of pages6
ISBN (Electronic)9781728164328
DOIs
StatePublished - Jun 2020
Event2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, United States
Duration: 21 Jul 202026 Jul 2020

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2020-June
ISSN (Print)2157-8095

Conference

Conference2020 IEEE International Symposium on Information Theory, ISIT 2020
Country/TerritoryUnited States
CityLos Angeles
Period21/07/2026/07/20

Fingerprint

Dive into the research topics of 'Universal superposition codes: capacity regions of compound quantum broadcast channel with confidential messages'. Together they form a unique fingerprint.

Cite this