Universal Domain Adaptation without Source Data for Remote Sensing Image Scene Classification

Qingsong Xu, Yilei Shi, Xiaoxiang Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Existing domain adaptation (DA) approaches are usually not well suited for practical DA scenarios of remote sensing image classification, since these methods (such as unsupervised DA) rely on rich prior knowledge about the relationship between label sets of source and target domains, and source data are usually not accessible in many cases due to the privacy or confidentiality issues. To this end, we propose a novel source data generation-based universal domain adaptation (SDG-UniDA) model, which includes two parts, i.e., the stage of source data generation and the stage of model adaptation. The first stage is to estimate the conditional distribution of source data from the pre-trained model using the knowledge of class-separability in the source domain and then to synthesize the source data. With this synthetic source data in hand, it becomes a universal DA task that requires no prior knowledge on the label sets. A novel transferable weight is proposed to distinguish the shared and private label sets to each domain, thereby promoting the adaptation in the automatically discovered shared label set and recognizing the 'unknown' samples successfully. Empirical results show that SDG-UniDA is effective and practical in this challenging setting for remote sensing image scene classification.

Original languageEnglish
Title of host publicationIGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5341-5344
Number of pages4
ISBN (Electronic)9781665427920
DOIs
StatePublished - 2022
Event2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 - Kuala Lumpur, Malaysia
Duration: 17 Jul 202222 Jul 2022

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2022-July

Conference

Conference2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022
Country/TerritoryMalaysia
CityKuala Lumpur
Period17/07/2222/07/22

Keywords

  • Source data generation
  • remote sensing image classification
  • universal domain adaptation

Fingerprint

Dive into the research topics of 'Universal Domain Adaptation without Source Data for Remote Sensing Image Scene Classification'. Together they form a unique fingerprint.

Cite this