Unitary 2-designs from random X- and Z-diagonal unitaries

Yoshifumi Nakata, Christoph Hirche, Ciara Morgan, Andreas Winter

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Unitary 2-designs are random unitaries simulating up to the second order statistical moments of the uniformly distributed random unitaries, often referred to as Haar random unitaries. They are used in a wide variety of theoretical and practical quantum information protocols and also have been used to model the dynamics in complex quantum many-body systems. Here, we show that unitary 2-designs can be approximately implemented by alternately repeating random unitaries diagonal in the Pauli-Z basis and Pauli-X basis. We also provide a converse about the number of repetitions needed to achieve unitary 2-designs. These results imply that the process after l repetitions achieves a Θ(d-l)-approximate unitary 2-design. Based on the construction, we further provide quantum circuits that efficiently implement approximate unitary 2-designs. Although a more efficient implementation of unitary 2-designs is known, our quantum circuit has its own merit that it is divided into a constant number of commuting parts, which enables us to apply all commuting gates simultaneously and leads to a possible reduction of an actual execution time. We finally interpret the result in terms of the dynamics generated by time-dependent Hamiltonians and provide for the first time a random disordered time-dependent Hamiltonian that generates a unitary 2-design after switching interactions only a few times.

Original languageEnglish
Article number052203
JournalJournal of Mathematical Physics
Volume58
Issue number5
DOIs
StatePublished - 1 May 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Unitary 2-designs from random X- and Z-diagonal unitaries'. Together they form a unique fingerprint.

Cite this