Uniform error bounds for Gaussian process regression with application to safe control

Armin Lederer, Jonas Umlauft, Sandra Hirche

Research output: Contribution to journalConference articlepeer-review

80 Scopus citations

Abstract

Data-driven models are subject to model errors due to limited and noisy training data. Key to the application of such models in safety-critical domains is the quantification of their model error. Gaussian processes provide such a measure and uniform error bounds have been derived, which allow safe control based on these models. However, existing error bounds require restrictive assumptions. In this paper, we employ the Gaussian process distribution and continuity arguments to derive a novel uniform error bound under weaker assumptions. Furthermore, we demonstrate how this distribution can be used to derive probabilistic Lipschitz constants and analyze the asymptotic behavior of our bound. Finally, we derive safety conditions for the control of unknown dynamical systems based on Gaussian process models and evaluate them in simulations of a robotic manipulator.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: 8 Dec 201914 Dec 2019

Fingerprint

Dive into the research topics of 'Uniform error bounds for Gaussian process regression with application to safe control'. Together they form a unique fingerprint.

Cite this