TY - JOUR
T1 - Unified Bayesian network for uncertainty quantification of physiological parameters in dynamic contrast enhanced (DCE) MRI of the liver
AU - Dejene, Edengenet M.
AU - Brenner, Winfried
AU - Makowski, Marcus R.
AU - Kolbitsch, Christoph
N1 - Publisher Copyright:
© 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd.
PY - 2023/11/7
Y1 - 2023/11/7
N2 - Objective. Physiological parameter estimation is affected by intrinsic ambiguity in the data such as noise and model inaccuracies. The aim of this work is to provide a deep learning framework for accurate parameter and uncertainty estimates for DCE-MRI in the liver. Approach. Concentration time curves are simulated to train a Bayesian neural network (BNN). Training of the BNN involves minimization of a loss function that jointly minimizes the aleatoric and epistemic uncertainties. Uncertainty estimation is evaluated for different noise levels and for different out of distribution (OD) cases, i.e. where the data during inference differs strongly to the data during training. The accuracy of parameter estimates are compared to a nonlinear least squares (NLLS) fitting in numerical simulations and in vivo data of a patient suffering from hepatic tumor lesions. Main results. BNN achieved lower root-mean-squared-errors (RMSE) than the NLLS for the simulated data. RMSE of BNN was on overage of all noise levels lower by 33% ± 1.9% for k trans, 22% ± 6% for v e and 89% ± 5% for vp than the NLLS. The aleatoric uncertainties of the parameters increased with increasing noise level, whereas the epistemic uncertainty increased when a BNN was evaluated with OD data. For the in vivo data, more robust parameter estimations were obtained by the BNN than the NLLS fit. In addition, the differences between estimated parameters for healthy and tumor regions-of-interest were significant (p < 0.0001). Significance. The proposed framework allowed for accurate parameter estimates for quantitative DCE-MRI. In addition, the BNN provided uncertainty estimates which highlighted cases of high noise and in which the training data did not match the data during inference. This is important for clinical application because it would indicate cases in which the trained model is inadequate and additional training with an adapted training data set is required.
AB - Objective. Physiological parameter estimation is affected by intrinsic ambiguity in the data such as noise and model inaccuracies. The aim of this work is to provide a deep learning framework for accurate parameter and uncertainty estimates for DCE-MRI in the liver. Approach. Concentration time curves are simulated to train a Bayesian neural network (BNN). Training of the BNN involves minimization of a loss function that jointly minimizes the aleatoric and epistemic uncertainties. Uncertainty estimation is evaluated for different noise levels and for different out of distribution (OD) cases, i.e. where the data during inference differs strongly to the data during training. The accuracy of parameter estimates are compared to a nonlinear least squares (NLLS) fitting in numerical simulations and in vivo data of a patient suffering from hepatic tumor lesions. Main results. BNN achieved lower root-mean-squared-errors (RMSE) than the NLLS for the simulated data. RMSE of BNN was on overage of all noise levels lower by 33% ± 1.9% for k trans, 22% ± 6% for v e and 89% ± 5% for vp than the NLLS. The aleatoric uncertainties of the parameters increased with increasing noise level, whereas the epistemic uncertainty increased when a BNN was evaluated with OD data. For the in vivo data, more robust parameter estimations were obtained by the BNN than the NLLS fit. In addition, the differences between estimated parameters for healthy and tumor regions-of-interest were significant (p < 0.0001). Significance. The proposed framework allowed for accurate parameter estimates for quantitative DCE-MRI. In addition, the BNN provided uncertainty estimates which highlighted cases of high noise and in which the training data did not match the data during inference. This is important for clinical application because it would indicate cases in which the trained model is inadequate and additional training with an adapted training data set is required.
KW - Bayesian neural networks
KW - DCE MRI
KW - liver perfusion
KW - parameter estimation
KW - quantitative imaging
KW - tracer kinetic modeling
KW - uncertainty quantification
UR - http://www.scopus.com/inward/record.url?scp=85175660812&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/ad0284
DO - 10.1088/1361-6560/ad0284
M3 - Article
C2 - 37820640
AN - SCOPUS:85175660812
SN - 0031-9155
VL - 68
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 21
M1 - 215018
ER -