Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold

Gemma C. Solomon, Alessio Gagliardi, Alessandro Pecchia, Thomas Frauenheim, Aldo Di Carlo, Jeffrey R. Reimers, Noel S. Hush

Research output: Contribution to journalArticlepeer-review

114 Scopus citations

Abstract

We present results for a simulated inelastic electron-tunneling spectra (IETS) from calculations using the "gDFTB" code. The geometric and electronic structure is obtained from calculations using a local-basis density-functional scheme, and a nonequilibrium Green's function formalism is employed to deal with the transport aspects of the problem. The calculated spectrum of octanedithiol on gold(111) shows good agreement with experimental results and suggests further details in the assignment of such spectra. We show that some low-energy peaks, unassigned in the experimental spectrum, occur in a region where a number of molecular modes are predicted to be active, suggesting that these modes are the cause of the peaks rather than a matrix signal, as previously postulated. The simulations also reveal the qualitative nature of the processes dominating IETS. It is highly sensitive only to the vibrational motions that occur in the regions of the molecule where there is electron density in the low-voltage conduction channel. This result is illustrated with an examination of the predicted variation of IETS with binding site and alkane chain length.

Original languageEnglish
Article number094704
JournalJournal of Chemical Physics
Volume124
Issue number9
DOIs
StatePublished - 2006
Externally publishedYes

Fingerprint

Dive into the research topics of 'Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold'. Together they form a unique fingerprint.

Cite this