TY - JOUR
T1 - Uncertainty-aware automated assessment of the arm impedance with upper-limb exoskeletons
AU - Tesfazgi, Samuel
AU - Sangouard, Ronan
AU - Endo, Satoshi
AU - Hirche, Sandra
N1 - Publisher Copyright:
Copyright © 2023 Tesfazgi, Sangouard, Endo and Hirche.
PY - 2023
Y1 - 2023
N2 - Providing high degree of personalization to a specific need of each patient is invaluable to improve the utility of robot-driven neurorehabilitation. For the desired customization of treatment strategies, precise and reliable estimation of the patient's state becomes important, as it can be used to continuously monitor the patient during training and to document the rehabilitation progress. Wearable robotics have emerged as a valuable tool for this quantitative assessment as the actuation and sensing are performed on the joint level. However, upper-limb exoskeletons introduce various sources of uncertainty, which primarily result from the complex interaction dynamics at the physical interface between the patient and the robotic device. These sources of uncertainty must be considered to ensure the correctness of estimation results when performing the clinical assessment of the patient state. In this work, we analyze these sources of uncertainty and quantify their influence on the estimation of the human arm impedance. We argue that this mitigates the risk of relying on overconfident estimates and promotes more precise computational approaches in robot-based neurorehabilitation.
AB - Providing high degree of personalization to a specific need of each patient is invaluable to improve the utility of robot-driven neurorehabilitation. For the desired customization of treatment strategies, precise and reliable estimation of the patient's state becomes important, as it can be used to continuously monitor the patient during training and to document the rehabilitation progress. Wearable robotics have emerged as a valuable tool for this quantitative assessment as the actuation and sensing are performed on the joint level. However, upper-limb exoskeletons introduce various sources of uncertainty, which primarily result from the complex interaction dynamics at the physical interface between the patient and the robotic device. These sources of uncertainty must be considered to ensure the correctness of estimation results when performing the clinical assessment of the patient state. In this work, we analyze these sources of uncertainty and quantify their influence on the estimation of the human arm impedance. We argue that this mitigates the risk of relying on overconfident estimates and promotes more precise computational approaches in robot-based neurorehabilitation.
KW - human-exoskeleton interaction
KW - neuromechanical state estimation
KW - reliable automated assessment
KW - sensitivity analysis
KW - uncertainty quantification
KW - uncertainty-aware simulation
UR - http://www.scopus.com/inward/record.url?scp=85169879486&partnerID=8YFLogxK
U2 - 10.3389/fnbot.2023.1167604
DO - 10.3389/fnbot.2023.1167604
M3 - Article
AN - SCOPUS:85169879486
SN - 1662-5218
VL - 17
JO - Frontiers in Neurorobotics
JF - Frontiers in Neurorobotics
M1 - 1167604
ER -