Ultrawide-range photon number calibration using a hybrid system combining nano-electromechanics and superconducting circuit quantum electrodynamics

Philip Schmidt, Daniel Schwienbacher, Matthias Pernpeintner, Friedrich Wulschner, Frank Deppe, Achim Marx, Rudolf Gross, Hans Huebl

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We present a hybrid system consisting of a superconducting coplanar waveguide resonator coupled to a nanomechanical string and a transmon qubit acting as a nonlinear circuit element. We perform spectroscopy for both the transmon qubit and the nanomechanical string. Measuring the ac-Stark shift on the transmon qubit and the electromechanically induced absorption on the string allows us to determine the average photon number in the microwave resonator in both the low and high power regimes. In this way, we measure photon numbers that are up to nine orders of magnitude apart. We find a quantitative agreement between the calibrations of photon numbers in the microwave resonator using the two methods. Our experiments demonstrate the combination of superconducting circuit quantum electrodynamics and nano-electromechanics on a single chip.

Original languageEnglish
Article number152601
JournalApplied Physics Letters
Volume113
Issue number15
DOIs
StatePublished - 8 Oct 2018

Fingerprint

Dive into the research topics of 'Ultrawide-range photon number calibration using a hybrid system combining nano-electromechanics and superconducting circuit quantum electrodynamics'. Together they form a unique fingerprint.

Cite this