Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces

Sander A. Mann, Nishant Nookala, Samuel C. Johnson, Michele Cotrufo, Ahmed Mekawy, John F. Klem, Igal Brener, Markus B. Raschke, Andrea Alù, Mikhail A. Belkin

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Highly nonlinear optical materials with fast third-order nonlinear optical response are crucial for the operation of all-optical photonic devices, such as switches for signal processing and computation, power limiters, and saturable absorbers. The nonlinear response of traditional optical materials is weak, thus requiring large light intensities to induce significant changes in their properties. Here we show that optical control of the coupling rate in subwavelength patch antennas coupled to intersubband transitions in multi-quantum-well semiconductor heterostructures can provide a giant third-order nonlinear response, on the order of 3.4 × 10−13m2/V2, with a response time <2 ps. We utilize this effect to realize intersubband polaritonic metasurfaces and demonstrate their operation as highly nonlinear saturable and reverse saturable absorbers, enabling optical power limiters and other elements for all-optical modulation and control. Our approach enables a plethora of compact, low-power, highly nonlinear devices with spectral, temporal, and structured wavefront responses tailored by design.

Original languageEnglish
Pages (from-to)606-613
Number of pages8
JournalOptica
Volume8
Issue number5
DOIs
StatePublished - May 2021

Fingerprint

Dive into the research topics of 'Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces'. Together they form a unique fingerprint.

Cite this