ULT-model: Towards a one-legged unified locomotion template model for forward hopping with an upright trunk

Dennis Ossadnik, Elisabeth Jensen, Sami Haddadin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

While many advancements have been made in the development of template models for describing upright-trunk locomotion, the majority of the effort has been focused on the stance phase. In this paper, we develop a new compact dynamic model as a first step toward a fully unified locomotion template model (ULT-model) of an upright-trunk forward hopping system, which will also require a unified control law in the next step. We demonstrate that all locomotion subfunctions are enabled by adding just a point foot mass and a parallel leg actuator to the well-known trunk SLIP model and that a stable limit cycle can be achieved. This brings us closer toward the ultimate goal of enabling closed-loop dynamics for anchor matching and thus achieving simple, efficient, robust and stable upright-trunk gait control, as observed in biological systems.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3040-3046
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 30 May 20215 Jun 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period30/05/215/06/21

Fingerprint

Dive into the research topics of 'ULT-model: Towards a one-legged unified locomotion template model for forward hopping with an upright trunk'. Together they form a unique fingerprint.

Cite this