TY - GEN
T1 - ULNeF
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
AU - Santesteban, Igor
AU - Otaduy, Miguel A.
AU - Thuerey, Nils
AU - Casas, Dan
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Recent advances in neural models have shown great results for virtual try-on (VTO) problems, where a 3D representation of a garment is deformed to fit a target body shape. However, current solutions are limited to a single garment layer, and cannot address the combinatorial complexity of mixing different garments. Motivated by this limitation, we investigate the use of neural fields for mix-and-match VTO, and identify and solve a fundamental challenge that existing neural-field methods cannot address: the interaction between layered neural fields. To this end, we propose a neural model that untangles layered neural fields to represent collision-free garment surfaces. The key ingredient is a neural untangling projection operator that works directly on the layered neural fields, not on explicit surface representations. Algorithms to resolve object-object interaction are inherently limited by the use of explicit geometric representations, and we show how methods that work directly on neural implicit representations could bring a change of paradigm and open the door to radically different approaches.
AB - Recent advances in neural models have shown great results for virtual try-on (VTO) problems, where a 3D representation of a garment is deformed to fit a target body shape. However, current solutions are limited to a single garment layer, and cannot address the combinatorial complexity of mixing different garments. Motivated by this limitation, we investigate the use of neural fields for mix-and-match VTO, and identify and solve a fundamental challenge that existing neural-field methods cannot address: the interaction between layered neural fields. To this end, we propose a neural model that untangles layered neural fields to represent collision-free garment surfaces. The key ingredient is a neural untangling projection operator that works directly on the layered neural fields, not on explicit surface representations. Algorithms to resolve object-object interaction are inherently limited by the use of explicit geometric representations, and we show how methods that work directly on neural implicit representations could bring a change of paradigm and open the door to radically different approaches.
UR - http://www.scopus.com/inward/record.url?scp=85143262945&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85143262945
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
Y2 - 28 November 2022 through 9 December 2022
ER -