UCDFormer: Unsupervised Change Detection Using a Transformer-Driven Image Translation

Qingsong Xu, Yilei Shi, Jianhua Guo, Chaojun Ouyang, Xiao Xiang Zhu

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Change detection (CD) by comparing two bitemporal images is a crucial task in remote sensing. With the advantages of requiring no cumbersome labeled change information, unsupervised CD has attracted extensive attention in the community. However, existing unsupervised CD approaches rarely consider the seasonal and style differences incurred by the illumination and atmospheric conditions in multitemporal images. To this end, we propose a CD with a domain shift setting for remote sensing images. Furthermore, we present a novel unsupervised CD method using a lightweight transformer, called UCDFormer. Specifically, a transformer-driven image translation composed of a lightweight transformer and a domain-specific affinity weight is first proposed to mitigate domain shift between two images with real-time efficiency. After image translation, we can generate the difference map between the translated before-event image and the original after-event image. Then, a novel reliable pixel extraction module is proposed to select significantly changed/unchanged pixel positions by fusing the pseudochange maps of fuzzy c-means clustering and adaptive threshold. Finally, a binary change map is obtained based on these selected pixel pairs and a binary classifier. Experimental results on different unsupervised CD tasks with seasonal and style changes demonstrate the effectiveness of the proposed UCDFormer. For example, compared with several other related methods, UCDFormer improves performance on the Kappa coefficient by more than 12%. In addition, UCDFormer achieves excellent performance for earthquake-induced landslide detection when considering large-scale applications. The code is available at https://github.com/zhu-xlab/UCDFormer.

Original languageEnglish
Article number5619917
JournalIEEE Transactions on Geoscience and Remote Sensing
StatePublished - 2023


  • Change detection (CD)
  • UCDFormer
  • domain shift
  • transformer
  • unsupervised learning


Dive into the research topics of 'UCDFormer: Unsupervised Change Detection Using a Transformer-Driven Image Translation'. Together they form a unique fingerprint.

Cite this