TY - GEN
T1 - Twisted reed-solomon codes
AU - Beelen, Peter
AU - Puchinger, Sven
AU - Rosenkilde Né Nielsen, Johan
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/8/9
Y1 - 2017/8/9
N2 - We present a new general construction of MDS codes over a finite field Fq. We describe two explicit subclasses which contain new MDS codes of length at least q/2 for all values of q ≥ 11. Moreover, we show that most of the new codes are not equivalent to a Reed-Solomon code.
AB - We present a new general construction of MDS codes over a finite field Fq. We describe two explicit subclasses which contain new MDS codes of length at least q/2 for all values of q ≥ 11. Moreover, we show that most of the new codes are not equivalent to a Reed-Solomon code.
KW - MDS Codes
KW - Reed-Solomon Codes
UR - http://www.scopus.com/inward/record.url?scp=85034093689&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2017.8006545
DO - 10.1109/ISIT.2017.8006545
M3 - Conference contribution
AN - SCOPUS:85034093689
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 336
EP - 340
BT - 2017 IEEE International Symposium on Information Theory, ISIT 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE International Symposium on Information Theory, ISIT 2017
Y2 - 25 June 2017 through 30 June 2017
ER -