Tuning the nonlinear dispersive coupling of nanomechanical string resonators

Katrin Gajo, Gianluca Rastelli, Eva M. Weig

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We investigate nonlinear dispersive mode coupling between the flexural in- A nd out-of-plane modes of two doubly clamped, nanomechanical silicon nitride string resonators. As the amplitude of one mode transitions from the linear response regime into the nonlinear regime, we find a frequency shift of two other modes. The resonators are strongly elastically coupled via a shared clamping point and can be tuned in and out of resonance dielectrically, giving rise to multimode avoided crossings. When the modes start hybridizing, their polarization changes. This affects the nonlinear dispersive coupling in a nontrivial way. We propose a theoretical model to describe the dependence of the dispersive coupling on the mode hybridization.

Original languageEnglish
Article number075420
JournalPhysical Review B
Volume101
Issue number7
DOIs
StatePublished - 15 Feb 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Tuning the nonlinear dispersive coupling of nanomechanical string resonators'. Together they form a unique fingerprint.

Cite this