TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination

Jana Hartmann, Elena Dragicevic, Helmuth Adelsberger, Horst A. Henning, Martin Sumser, Joel Abramowitz, Robert Blum, Alexander Dietrich, Marc Freichel, Veit Flockerzi, Lutz Birnbaumer, Arthur Konnerth

Research output: Contribution to journalArticlepeer-review

342 Scopus citations

Abstract

In the mammalian central nervous system, slow synaptic excitation involves the activation of metabotropic glutamate receptors (mGluRs). It has been proposed that C1-type transient receptor potential (TRPC1) channels underlie this synaptic excitation, but our analysis of TRPC1-deficient mice does not support this hypothesis. Here, we show unambiguously that it is TRPC3 that is needed for mGluR-dependent synaptic signaling in mouse cerebellar Purkinje cells. TRPC3 is the most abundantly expressed TRPC subunit in Purkinje cells. In mutant mice lacking TRPC3, both slow synaptic potentials and mGluR-mediated inward currents are completely absent, while the synaptically mediated Ca2+ release signals from intracellular stores are unchanged. Importantly, TRPC3 knockout mice exhibit an impaired walking behavior. Taken together, our results establish TRPC3 as a new type of postsynaptic channel that mediates mGluR-dependent synaptic transmission in cerebellar Purkinje cells and is crucial for motor coordination.

Original languageEnglish
Pages (from-to)392-398
Number of pages7
JournalNeuron
Volume59
Issue number3
DOIs
StatePublished - 14 Aug 2008

Keywords

  • MOLNEURO
  • SIGNALING

Fingerprint

Dive into the research topics of 'TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination'. Together they form a unique fingerprint.

Cite this