TY - GEN
T1 - TriPlaneNet
T2 - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
AU - Bhattarai, Ananta R.
AU - Nießner, Matthias
AU - Sevastopolsky, Artem
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Recent progress in NeRF-based GANs has introduced a number of approaches for high-resolution and high-fidelity generative modeling of human heads with a possibility for novel view rendering. At the same time, one must solve an inverse problem to be able to re-render or modify an existing image or video. Despite the success of universal optimization-based methods for 2D GAN inversion, those applied to 3D GANs may fail to extrapolate the result onto the novel view, whereas optimization-based 3D GAN in-version methods are time-consuming and can require at least several minutes per image. Fast encoder-based techniques, such as those developed for StyleGAN, may also be less appealing due to the lack of identity preservation. Our work introduces a fast technique that bridges the gap between the two approaches by directly utilizing the tri-plane representation presented for the EG3D generative model. In particular, we build upon a feed-forward convolutional encoder for the latent code and extend it with a fully-convolutional predictor of tri-plane numerical offsets. The renderings are similar in quality to the ones produced by optimization-based techniques and outperform the ones by encoder-based methods. As we empirically prove, this is a consequence of directly operating in the tri-plane space, not in the GAN parameter space, while making use of an encoder-based trainable approach. Finally, we demonstrate significantly more correct embedding of a face image in 3D than for all the baselines, further strengthened by a probably symmetric prior enabled during training.
AB - Recent progress in NeRF-based GANs has introduced a number of approaches for high-resolution and high-fidelity generative modeling of human heads with a possibility for novel view rendering. At the same time, one must solve an inverse problem to be able to re-render or modify an existing image or video. Despite the success of universal optimization-based methods for 2D GAN inversion, those applied to 3D GANs may fail to extrapolate the result onto the novel view, whereas optimization-based 3D GAN in-version methods are time-consuming and can require at least several minutes per image. Fast encoder-based techniques, such as those developed for StyleGAN, may also be less appealing due to the lack of identity preservation. Our work introduces a fast technique that bridges the gap between the two approaches by directly utilizing the tri-plane representation presented for the EG3D generative model. In particular, we build upon a feed-forward convolutional encoder for the latent code and extend it with a fully-convolutional predictor of tri-plane numerical offsets. The renderings are similar in quality to the ones produced by optimization-based techniques and outperform the ones by encoder-based methods. As we empirically prove, this is a consequence of directly operating in the tri-plane space, not in the GAN parameter space, while making use of an encoder-based trainable approach. Finally, we demonstrate significantly more correct embedding of a face image in 3D than for all the baselines, further strengthened by a probably symmetric prior enabled during training.
KW - 3D computer vision
KW - Algorithms
KW - Algorithms
KW - Computational photography
KW - image and video synthesis
UR - http://www.scopus.com/inward/record.url?scp=85190887146&partnerID=8YFLogxK
U2 - 10.1109/WACV57701.2024.00303
DO - 10.1109/WACV57701.2024.00303
M3 - Conference contribution
AN - SCOPUS:85190887146
T3 - Proceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
SP - 3043
EP - 3053
BT - Proceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 4 January 2024 through 8 January 2024
ER -