Triangle fixing algorithms for the metric nearness problem

Inderjit S. Dhillon, Suvrit Sra, Joel A. Tropp

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Various problems in machine learning, databases, and statistics involve pairwise distances among a set of objects. It is often desirable for these distances to satisfy the properties of a metric, especially the triangle inequality. Applications where metric data is useful include clustering, classification, metric-based indexing, and approximation algorithms for various graph problems. This paper presents the Metric Nearness Problem: Given a dissimilarity matrix, find the "nearest" matrix of distances that satisfy the triangle inequalities. For ℓp nearness measures, this paper develops efficient triangle fixing algorithms that compute globally optimal solutions by exploiting the inherent structure of the problem. Empirically, the algorithms have time and storage costs that are linear in the number of triangle constraints. The methods can also be easily parallelized for additional speed.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 17 - Proceedings of the 2004 Conference, NIPS 2004
PublisherNeural information processing systems foundation
ISBN (Print)0262195348, 9780262195348
StatePublished - 2005
Externally publishedYes
Event18th Annual Conference on Neural Information Processing Systems, NIPS 2004 - Vancouver, BC, Canada
Duration: 13 Dec 200416 Dec 2004

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Conference

Conference18th Annual Conference on Neural Information Processing Systems, NIPS 2004
Country/TerritoryCanada
CityVancouver, BC
Period13/12/0416/12/04

Fingerprint

Dive into the research topics of 'Triangle fixing algorithms for the metric nearness problem'. Together they form a unique fingerprint.

Cite this