Tree-Encoded Bitmaps

Harald Lang, Alexander Beischl, Viktor Leis, Peter Boncz, Thomas Neumann, Alfons Kemper

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

We propose a novel method to represent compressed bitmaps. Similarly to existing bitmap compression schemes, we exploit the compression potential of bitmaps populated with consecutive identical bits, i.e., 0-runs and 1-runs. But in contrast to prior work, our approach employs a binary tree structure to represent runs of various lengths. Leaf nodes in the upper tree levels thereby represent longer runs, and vice versa. The tree-based representation results in high compression ratios and enables efficient random access, which in turn allows for the fast intersection of bitmaps. Our experimental analysis with randomly generated bitmaps shows that our approach significantly improves over state-of-the-art compression techniques when bitmaps are dense and/or only barely clustered. Further, we evaluate our approach with real-world data sets, showing that our tree-encoded bitmaps can save up to one third of the space over existing techniques.

Original languageEnglish
Title of host publicationSIGMOD 2020 - Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data
PublisherAssociation for Computing Machinery
Pages937-967
Number of pages31
ISBN (Electronic)9781450367356
DOIs
StatePublished - 14 Jun 2020
Event2020 ACM SIGMOD International Conference on Management of Data, SIGMOD 2020 - Portland, United States
Duration: 14 Jun 202019 Jun 2020

Publication series

NameProceedings of the ACM SIGMOD International Conference on Management of Data
ISSN (Print)0730-8078

Conference

Conference2020 ACM SIGMOD International Conference on Management of Data, SIGMOD 2020
Country/TerritoryUnited States
CityPortland
Period14/06/2019/06/20

Keywords

  • bitmap
  • compression
  • data structure
  • indexing
  • succinct

Fingerprint

Dive into the research topics of 'Tree-Encoded Bitmaps'. Together they form a unique fingerprint.

Cite this