TransPLANT resources for triticeae genomic data

Manuel Spannagl, Michael Alaux, Matthias Lange, Daniel M. Bolser, Kai C. Bader, Thomas Letellier, Erik Kimmel, Raphael Flores, Cyril Pommier, Arnaud Kerhornou, Brandon Walts, Thomas Nussbaumer, Christoph Grabmuller, Jinbo Chen, Christian Colmsee, Sebastian Beier, Martin Mascher, Thomas Schmutzer, Daniel Arend, Anil ThankiRicardo Ramirez-Gonzalez, Martin Ayling, Sarah Ayling, Mario Caccamo, Klaus F.X. Mayer, Uwe Scholz, Delphine Steinbach, Hadi Quesneville, Paul J. Kersey

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The genome sequences of many important Triticeae species, including bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), remained uncharacterized for a long time because their high repeat content, large sizes, and polyploidy. As a result of improvements in sequencing technologies and novel analyses strategies, several of these have recently been deciphered. These efforts have generated new insights into Triticeae biology and genome organization and have important implications for downstream usage by breeders, experimental biologists, and comparative genomicists. transPLANT (http://www.transplantdb.eu) is an EU-funded project aimed at constructing hardware, software, and data infrastructure for genome-scale research in the life sciences. Since the Triticeae data are intrinsically complex, heterogenous, and distributed, the transPLANT consortium has undertaken efforts to develop common data formats and tools that enable the exchange and integration of data from distributed resources. Here we present an overview of the individual Triticeae genome resources hosted by transPLANT partners, introduce the objectives of transPLANT, and outline common developments and interfaces supporting integrated data access.

Original languageEnglish
JournalPlant Genome
Volume9
Issue number1
DOIs
StatePublished - Mar 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'TransPLANT resources for triticeae genomic data'. Together they form a unique fingerprint.

Cite this