TRANQUIL CLOUDS: NEURAL NETWORKS FOR LEARNING TEMPORALLY COHERENT FEATURES IN POINT CLOUDS

Lukas Prantl, Nuttapong Chentanez, Stefan Jeschke, Nils Thuerey

Research output: Contribution to conferencePaperpeer-review

9 Scopus citations

Abstract

Point clouds, as a form of Lagrangian representation, allow for powerful and flexible applications in a large number of computational disciplines. We propose a novel deep-learning method to learn stable and temporally coherent feature spaces for points clouds that change over time. We identify a set of inherent problems with these approaches: without knowledge of the time dimension, the inferred solutions can exhibit strong flickering, and easy solutions to suppress this flickering can result in undesirable local minima that manifest themselves as halo structures. We propose a novel temporal loss function that takes into account higher time derivatives of the point positions, and encourages mingling, i.e., to prevent the aforementioned halos. We combine these techniques in a super-resolution method with a truncation approach to flexibly adapt the size of the generated positions. We show that our method works for large, deforming point sets from different sources to demonstrate the flexibility of our approach.

Original languageEnglish
StatePublished - 2020
Event8th International Conference on Learning Representations, ICLR 2020 - Addis Ababa, Ethiopia
Duration: 30 Apr 2020 → …

Conference

Conference8th International Conference on Learning Representations, ICLR 2020
Country/TerritoryEthiopia
CityAddis Ababa
Period30/04/20 → …

Fingerprint

Dive into the research topics of 'TRANQUIL CLOUDS: NEURAL NETWORKS FOR LEARNING TEMPORALLY COHERENT FEATURES IN POINT CLOUDS'. Together they form a unique fingerprint.

Cite this