TRAINING INVARIANCES AND THE LOW-RANK PHENOMENON: BEYOND LINEAR NETWORKS

Research output: Contribution to conferencePaperpeer-review

15 Scopus citations

Abstract

The implicit bias induced by the training of neural networks has become a topic of rigorous study. In the limit of gradient flow and gradient descent with appropriate step size, it has been shown that when one trains a deep linear network with logistic or exponential loss on linearly separable data, the weights converge to rank-1 matrices. In this paper, we extend this theoretical result to the last few linear layers of the much wider class of nonlinear ReLU-activated feedforward networks containing fully-connected layers and skip connections. Similar to the linear case, the proof relies on specific local training invariances, sometimes referred to as alignment, which we show to hold for submatrices where neurons are stably-activated in all training examples, and it reflects empirical results in the literature. We also show this is not true in general for the full matrix of ReLU fully-connected layers. Our proof relies on a specific decomposition of the network into a multilinear function and another ReLU network whose weights are constant under a certain parameter directional convergence.

Original languageEnglish
StatePublished - 2022
Externally publishedYes
Event10th International Conference on Learning Representations, ICLR 2022 - Virtual, Online
Duration: 25 Apr 202229 Apr 2022

Conference

Conference10th International Conference on Learning Representations, ICLR 2022
CityVirtual, Online
Period25/04/2229/04/22

Fingerprint

Dive into the research topics of 'TRAINING INVARIANCES AND THE LOW-RANK PHENOMENON: BEYOND LINEAR NETWORKS'. Together they form a unique fingerprint.

Cite this