Towards wall-adaption of turbulence models within the lattice Boltzmann framework

Patrick Nathen, Daniel Gaudlitz, Nikolaus Adams

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

This paper presents the development towards wall adaptive explicit filters for the simulation of turbulent wall bounded flows in the framework of the lattice Boltzmann method (LBM). First, we show the effect of different collision models on the characteristics of turbulent flow simulations by employing the Taylor-Green vortex as a numerical testcase. Second, an extension of the approximate deconvolution method (ADM), see Malaspinas & Sagaut (2012), Malaspinas & Sagaut (2011) and Sagaut (2010) for the simulation of wall-bounded turbulent flows is presented. A temporal dissipation relaxation is applied for explicit filtering, in order to suppress filtering in regions, where the flow is resolved and to adapt filtering in underresolved regions in such way, that the energy drain in the scales is physically motivated and consistent with the kinetic theory of turbulence. We apply the extended ADM for the simulation of a turbulent channel flow at Reτ = 180 and Reτ = 395 to demonstrate, that the ADM method of Malaspinas & Sagaut (2011) with selective viscosity filters is strictly dissipative for low-order filters. Hence, especially for wall-bounded flows the application of the proposed adaptive relaxation of the filter can be beneficial.

Original languageEnglish
Title of host publication9th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2015
PublisherTSFP-9
ISBN (Electronic)9780000000002
StatePublished - 2015
Event9th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2015 - Melbourne, Australia
Duration: 30 Jun 20153 Jul 2015

Publication series

Name9th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2015
Volume1

Conference

Conference9th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2015
Country/TerritoryAustralia
CityMelbourne
Period30/06/153/07/15

Fingerprint

Dive into the research topics of 'Towards wall-adaption of turbulence models within the lattice Boltzmann framework'. Together they form a unique fingerprint.

Cite this