Towards optimal transport with global invariances

David Alvarez-Melis, Stefanie Jegelka, Tommi S. Jaakkola

Research output: Contribution to conferencePaperpeer-review

28 Scopus citations

Abstract

Many problems in machine learning involve calculating correspondences between sets of objects, such as point clouds or images. Discrete optimal transport provides a natural and successful approach to such tasks whenever the two sets of objects can be represented in the same space, or at least distances between them can be directly evaluated. Unfortunately neither requirement is likely to hold when object representations are learned from data. Indeed, automatically derived representations such as word embeddings are typically fixed only up to some global transformations, for example, reflection or rotation. As a result, pairwise distances across two such instances are ill-defined without specifying their relative transformation. In this work, we propose a general framework for optimal transport in the presence of latent global transformations. We cast the problem as a joint optimization over transport couplings and transformations chosen from a flexible class of invariances, propose algorithms to solve it, and show promising results in various tasks, including a popular unsupervised word translation benchmark.

Original languageEnglish
StatePublished - 2020
Externally publishedYes
Event22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019 - Naha, Japan
Duration: 16 Apr 201918 Apr 2019

Conference

Conference22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019
Country/TerritoryJapan
CityNaha
Period16/04/1918/04/19

Fingerprint

Dive into the research topics of 'Towards optimal transport with global invariances'. Together they form a unique fingerprint.

Cite this