Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry

Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, David Rügamer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Bayesian inference in deep neural networks is challenging due to the high-dimensional, strongly multi-modal parameter posterior density landscape. Markov chain Monte Carlo approaches asymptotically recover the true posterior but are considered prohibitively expensive for large modern architectures. We argue that the dilemma between exact-but-unaffordable and cheap-but-inexact approaches can be mitigated by exploiting symmetries in the posterior landscape. We show theoretically that the posterior predictive density in Bayesian neural networks can be restricted to a symmetry-free parameter reference set. By further deriving an upper bound on the number of Monte Carlo chains required to capture the functional diversity, we propose a straightforward approach for feasible Bayesian inference.

Original languageEnglish
Title of host publicationProceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
EditorsKate Larson
PublisherInternational Joint Conferences on Artificial Intelligence
Pages8466-8470
Number of pages5
ISBN (Electronic)9781956792041
StatePublished - 2024
Event33rd International Joint Conference on Artificial Intelligence, IJCAI 2024 - Jeju, Korea, Republic of
Duration: 3 Aug 20249 Aug 2024

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
Country/TerritoryKorea, Republic of
CityJeju
Period3/08/249/08/24

Fingerprint

Dive into the research topics of 'Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry'. Together they form a unique fingerprint.

Cite this