Towards a general independent subspace analysis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

The increasingly popular independent component analysis (ICA) may only be applied to data following the generative ICA model in order to guarantee algorithm-independent and theoretically valid results. Subspace ICA models generalize the assumption of component independence to independence between groups of components. They are attractive candidates for dimensionality reduction methods, however are currently limited by the assumption of equal group sizes or less general semi-parametric models. By introducing the concept of irreducible independent subspaces or components, we present a generalization to a parameter-free mixture model. Moreover, we relieve the condition of at-most-one-Gaussian by including previous results on non-Gaussian component analysis. After introducing this general model, we discuss joint block diagonalization with unknown block sizes, on which we base a simple extension of JADE to algorithmically perform the subspace analysis. Simulations confirm the feasibility of the algorithm.

Original languageEnglish
Title of host publicationNIPS 2006
Subtitle of host publicationProceedings of the 19th International Conference on Neural Information Processing Systems
EditorsBernhard Scholkopf, John C. Platt, Thomas Hofmann
PublisherMIT Press Journals
Pages1361-1368
Number of pages8
ISBN (Electronic)0262195682, 9780262195683
StatePublished - 2006
Externally publishedYes
Event19th International Conference on Neural Information Processing Systems, NIPS 2006 - Vancouver, Canada
Duration: 4 Dec 20067 Dec 2006

Publication series

NameNIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems

Conference

Conference19th International Conference on Neural Information Processing Systems, NIPS 2006
Country/TerritoryCanada
CityVancouver
Period4/12/067/12/06

Fingerprint

Dive into the research topics of 'Towards a general independent subspace analysis'. Together they form a unique fingerprint.

Cite this