Topological phases in the dynamics of the simple exclusion process

Juan P. Garrahan, Frank Pollmann

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We study the dynamical large deviations of the classical stochastic symmetric simple exclusion process (SSEP) by means of numerical matrix product states. We show that for half filling, long-time trajectories with a large enough imbalance between the number hops in even and odd bonds of the lattice belong to distinct symmetry-protected topological (SPT) phases. Using tensor network techniques, we obtain the large deviation (LD) phase diagram in terms of counting fields conjugate to the dynamical activity and the total hop imbalance. We show the existence of high activity trivial and nontrivial SPT phases (classified according to string order parameters) separated by either a critical phase or a critical point. Using the leading eigenstate of the tilted generator, obtained from infinite-system density-matrix renormalization group simulations, we construct a near-optimal dynamics for sampling the LDs, and show that the SPT phases manifest at the level of rare stochastic trajectories. We also show how to extend these results to other filling fractions, and discuss generalizations to asymmetric SEPs.

Original languageEnglish
Article numberL032105
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume109
Issue number3
DOIs
StatePublished - Mar 2024

Fingerprint

Dive into the research topics of 'Topological phases in the dynamics of the simple exclusion process'. Together they form a unique fingerprint.

Cite this