TY - JOUR
T1 - Toolbox of Nonmetallocene Lanthanides
T2 - Multifunctional Catalysts in Group-Transfer Polymerization
AU - Adams, Friederike
AU - Machat, Martin R.
AU - Altenbuchner, Peter T.
AU - Ehrmaier, Johannes
AU - Pöthig, Alexander
AU - Karsili, Tolga N.V.
AU - Rieger, Bernhard
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/8/21
Y1 - 2017/8/21
N2 - Herein, we present a fundamental study of isostructural 2-methoxyethylamino-bis(phenolate)-lanthanide complexes [(ONOO)RM(X)(THF)] (M = Lu, Y; R = tBu, CMe2Ph, X = CH2TMS, collidine; THF = tetrahydrofuran; TMS = trimethylsilyl) for rare-earth metal-mediated group-transfer polymerization (GTP). This analysis includes the differentiation of electron-donating and nondonating vinyl monomers and two metal centers with regard to the ionic radius (yttrium and lutetium). In addition, highly nucleophilic alkyl initiators are compared with electron-donating heteroaromatic initiators. Our examinations include the impact of these parameters on the activity, initiator efficiency, and tacticity of the obtained polymers. Density functional theory calculations and proposed catalyst structure determinations via X-ray analysis support these investigations. This facilitates the selection of the best metal and initiator combination to address efficient and stereospecific polymerization of a broad range of Michael monomers. [(ONOO)tBuLu(X)(THF)] shows the highest activity of 2220 h-1 (normalized turnover frequency) for the polymerization of 2-vinylpyridine due to the higher Lewis-acidity of lutetium. Through C(sp3)-H bond activation, catalysts with higher initiator efficiency in N,N′-dimethylacrylamide (DMAA) and diethylvinylphosphonate polymerization were synthesized. Remarkably, [(ONOO)tBuY(collidine)(THF)] was capable of stereospecifically polymerizing DMAA to highly isotactic poly(DMAA) (Pm = 0.94). Overall, the kinetics studies reveal a living-type GTP mechanism for all of the tested catalysts, enabling precise molecular-weight predeterminations with narrow molecular weight distributions (Dł ≤ 1.06).
AB - Herein, we present a fundamental study of isostructural 2-methoxyethylamino-bis(phenolate)-lanthanide complexes [(ONOO)RM(X)(THF)] (M = Lu, Y; R = tBu, CMe2Ph, X = CH2TMS, collidine; THF = tetrahydrofuran; TMS = trimethylsilyl) for rare-earth metal-mediated group-transfer polymerization (GTP). This analysis includes the differentiation of electron-donating and nondonating vinyl monomers and two metal centers with regard to the ionic radius (yttrium and lutetium). In addition, highly nucleophilic alkyl initiators are compared with electron-donating heteroaromatic initiators. Our examinations include the impact of these parameters on the activity, initiator efficiency, and tacticity of the obtained polymers. Density functional theory calculations and proposed catalyst structure determinations via X-ray analysis support these investigations. This facilitates the selection of the best metal and initiator combination to address efficient and stereospecific polymerization of a broad range of Michael monomers. [(ONOO)tBuLu(X)(THF)] shows the highest activity of 2220 h-1 (normalized turnover frequency) for the polymerization of 2-vinylpyridine due to the higher Lewis-acidity of lutetium. Through C(sp3)-H bond activation, catalysts with higher initiator efficiency in N,N′-dimethylacrylamide (DMAA) and diethylvinylphosphonate polymerization were synthesized. Remarkably, [(ONOO)tBuY(collidine)(THF)] was capable of stereospecifically polymerizing DMAA to highly isotactic poly(DMAA) (Pm = 0.94). Overall, the kinetics studies reveal a living-type GTP mechanism for all of the tested catalysts, enabling precise molecular-weight predeterminations with narrow molecular weight distributions (Dł ≤ 1.06).
UR - http://www.scopus.com/inward/record.url?scp=85027721629&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.7b01261
DO - 10.1021/acs.inorgchem.7b01261
M3 - Article
C2 - 28796505
AN - SCOPUS:85027721629
SN - 0020-1669
VL - 56
SP - 9754
EP - 9764
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 16
ER -