TimingCamouflage: Improving circuit security against counterfeiting by unconventional timing

Grace Li Zhang, Bing Li, Bei Yu, David Z. Pan, Ulf Schlichtmann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

41 Scopus citations

Abstract

With recent advances in reverse engineering, attackers can reconstruct a netlist to counterfeit chips by opening the die and scanning all layers of original chips. This relatively easy counterfeiting is made possible by the use of the standard simple clocking scheme where all combinational blocks function within one clock period. In this paper, we propose a method to invalidate the assumption that a netlist completely represents the function of a circuit. With the help of wave-pipelining paths, this method forces attackers to capture delay information from manufactured chips, which is a very challenging task because we also introduce false paths. Experimental results confirm that wave-pipelining paths and false paths can be constructed in benchmark circuits successfully with only a negligible cost, while the potential attack techniques can be thwarted.

Original languageEnglish
Title of host publicationProceedings of the 2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages91-96
Number of pages6
ISBN (Electronic)9783981926316
DOIs
StatePublished - 19 Apr 2018
Event2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018 - Dresden, Germany
Duration: 19 Mar 201823 Mar 2018

Publication series

NameProceedings of the 2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018
Volume2018-January

Conference

Conference2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018
Country/TerritoryGermany
CityDresden
Period19/03/1823/03/18

Fingerprint

Dive into the research topics of 'TimingCamouflage: Improving circuit security against counterfeiting by unconventional timing'. Together they form a unique fingerprint.

Cite this